Current Location : Home > Faculty > All PIs > Sei Yoshida > Content

Sei Yoshida
Ph.D., Professor, State laboratory of Chemical Medical Biology,graduated from University of Tokyo
Special Talent:
Address: College of Life Sciences, Nankai University No.94, Weijin Road,Tianjin, China, 300071
Telephone:
Email: seiyoshi@nankai.edu.cn
Research Group Website: https://seiyoshida-lab.github.io/

Education History

2002, PhD, Microbiology and Immunology, University of Tokyo, Tokyo, Japan

1998, MS, Life Sciences, Rikkyo University, Tokyo, Japan

1994, BA, Biophysics, Rikkyo University, Tokyo, Japan.

Honors and Awards:

Scientific Achievements & Selected Publications:

1.   Hua R, Wei J, Torres M, Sun X, He Y, Wang L, Li Y, Inoki K, and Yoshida S. Identification of Circular dorsal Ruffles as Signal Platforms for the AKT pathway in Glomerular Podocytes. Journal of Cellular Physiology (2023). Doi: 10.1002/jcp.30996

2.   Sun X, Liu Y, Zhou S, Wang L, Wei J, Hua R, Shen Z, and Yoshida S. Circular dorsal ruffles disturbe the growth factor-induced PI3K-AKT pathway in hepatocellular carcinoma Hep3B cells. Cell Communication and Signaling (2022). Doi: 10.1186/s12964-022-00911-6

3.   Yoshida S, Wei X, Zhang G, et al., Endoplasmic reticulum-associated degradation is required for nephrin maturation and kidney glomerular filtration function. The Journal of Clinical Investigation (2021). Doi: 10.1172/JCI143988 

4.   Swanson JA and Yoshida S. Macropinosomes as units of signal transduction. Philosophical Transactions of the Royal Society B (2019). 374: 20180157

5.   Yoshida S, Pacitto R, Inoki K and Swanson J. Macropinocytosis, mTORC1 and Cellular Growth Control. Cellular and Molecular Life Sciences (2018). 75: 1227-1239 doi: 10.1007/s00018-017-2710-7

6.   Yoshida S, Pacitto R, Sesi C, Kotula L, and Swanson J. Dorsal Ruffles Enhance Activation of Akt by Growth Factors. Journal of Cell Science (2018). 131: jcs220517 doi: 10.1242/jcs.220517

7.   Pacitto R, Gaeta I, Swanson JA and Yoshida S. CXCL12-induced macropinocytosis modulates two distinct pathways to activate mTORC1 in macrophages. Journal of Leukocyte Biology (2017). 101: 683-692 doi: 10.1189/jlb.2A0316-141RR

8.   Yoshida S, Pacitto R, Yao Y, Inoki K and Swanson JA. Growth Factor Signaling to mTORC1 by Amino Acid-laden Macropinosomes. Journal of Cell Biology (2015). 211: 159-172. doi: 10.1083/jcb.201504097

9.   Yoshida S, Gaeta I, Pacitto R, Krienke L, Alge O, Gregorka B and Swanson JA. Differential signaling During Macropinocytosis in Response to M-CAF and PMA in Macrophages. Frontiers in Physiology (2015). 6:8. doi: 10.3389/fphys.2015.00008.

10. Yoshida S, Hong S, Suzuki T, Nada S, Mannan AM, Wang J, Okada M, Guan KL, and Inoki K. Redox regulates mTORC1 activity by modulating the TSC1/TSC2-Rheb pathway. Journal of Biological Chemistry (2011). 286:32651-32660.

11. Yoshida S, Hoppe AD, Araki N, and Swanson JA. Sequential signaling in plasma-membrane domains during macropinosome formation in macrophages. Journal of Cell Science (2009). 122:3250-3261. doi: 10.1242/jcs.053207

12. Yoshida S, Handa Y, Suzuki T, Ogawa M, Suzuki M, Tamai A, Abe A, Katayama E, and Sasakawa C. Microtubule-severing activity of Shigella is pivotal for intercellular spreading. Science (2006). 314:985-989.

13. Yoshida S and Sasakawa C. Exploiting host microtubule dynamics: A new aspect of bacterial invasion. Trends in Microbiology (2003). 11:139-143.

14. Yoshida S, Katayama E, Kuwae A, Mimuro H, Suzuki T, and Sasakawa C. Shigella delivers an effector protein to trigger host microtubule dynamic-instability, which promotes Rac1 activity and efficient bacterial internalization. EMBO Journal (2002). 21:2923-2935.