Current Location : Home > Faculty > All PIs > Meifeng Zhu > Content

朱美峰 研究员 Meifeng Zhu,
Doctor degree, professor, College of Life Sciences, Key Laboratory of Bioactive Materials (Ministry of Education), State Key Laboratory of Medicinal Chemical Biology, graduated from Nankai University
Special Talent:
Address: Nankai University, Tianjin 300071, China
Telephone: 15822350349
Email: zhumeifeng2013@163.com
Research Group Website: https://konglab.nankai.edu.cn/main.htm

Research Interest

Focusing on the key scientific issues of "how to promote tissue damage repair and regeneration", the applicant has carried out a series of basic and clinical transformation research related to the improvement of tissue repair with biomaterials by using new engineering technologies and methods. The construction of artificial blood vessels with guiding structure solves the bottleneck problem of "pseudo natural regeneration of blood vessels in vivo". A new method was established and developed to accurately control the topological pore structure of extracellular matrix materials and effectively promote the in situ regeneration of oriented tissues. An in situ antibacterial hemostatic and regenerative multichannel sponge material was developed. Neural catheter products are undergoing clinical transformation.

Education History

2000.09-2004.07,College of Life Sciences, Northwest Agriculture and Forestry UniversityBachelor of Biotechnology

2009.09-2012.07,College of Life Sciences, Nankai UniversityMaster of Biochemistry and Molecular Biology

2012.09-2015.07,College of Life Sciences, Nankai UniversityDoctor of Biochemistry and Molecular Biology

Honors and Awards

1.   First prize of Tianjin Intellectual Property Innovation, Entrepreneurship, Invention and Design Competition , 2021

2.   Gold Award of the 5th China "Internet Plus" College Student Innovation and Entrepreneurship Competition ,2019

Scientific Achievements & Selected Publications

1.   Liu S, Yao L, Wang Y, Li Y, Jia Y, Yang Y, Na Li, Hu Y, Kong D, Dong X*, Wang K*, Zhu M*, Immunomodulatory hybrid micro-nanofiber scaffolds enhance vascular regeneration, Bioactive Materials, 2023, 21, 464-482. IF16.874

2.   He X, Li W, Liu S, Li Y, Chen Y, Dan N, Dan W*, Zhu M*. Fabrication of high-strength, flexible, porous collagen-based scaffolds to promote tissue regeneration. Mater Today Bio. 2022 Aug 5;16:100376. doi: 10.1016/j.mtbio.2022.100376. IF10.761

3.   Du X, Wu L,Yan H, Jiang Z, Li S, Li W, Bai Y, Wang H, Cheng Z, Kong D*, Wang L*, Zhu M*. Microchannelled alkylated chitosan sponge to treat noncompressible hemorrhages and facilitate wound healing. Nature communications, 2021, 12: 4733. IF17.694

4.   Zhu M, Li W, Dong X, Yuan X, Midgley A, Chang H, Wang Y, Wang H, Wang K*, Ma PX, Wang H*, Kong D*. In vivo engineered extracellular matrix scaffolds with instructive niches for oriented tissue regeneration. Nature communications, 2019, 10(1): 1-14.IF17.694

5.   Zhi D, Cheng Q, Midgley AC, Zhang Q, Wei T, Li Yi, Wang T, Ma T, Rafique M, Xia S, Cao Y, Li Y, Li J, Che Y, Zhu M*, Wang K*, Kong D* Mechanically reinforced biotubes for arterial replacement and arteriovenous grafting inspired by architectural engineering. Science Advances, 2022 8, eabl3888.IF14.957

6.   Wang H, Zhou X, Wang J, Zhang X, Zhu M*, Wang H*, Fabrication of channeled scaffolds through polyelectrolyte complex (PEC) printed sacrificial templates for tissue formation, Bioactive Materials, 2022, 17: 261-275.IF16.874

7.   Dong X, Liu S, Yang Y, Gao S, Li W, Cao J, Wan Y, Huang Z, Fan G, Chen Q,  Wang H*, Zhu M*, Kong D*. Aligned microfiber-induced macrophage polarization to guide schwann-cell-enabled peripheral nerve regeneration. Biomaterials, 2021, 272: 120767. IF15.304

8.   Li W, Bai Y, Cao J, Gao S, Xu P, Feng G, Wang L, Wang H, Kong D, Fan M*, Zhang J*, Zhu M*. Highly interconnected inverse opal extracellular matrix scaffolds enhance stem cell therapy in limb ischemia. Acta Biomaterialia, 2021, 128: 209-221.IF10.633

9.   Yan H, Mi X, A Midgley, Du X, Huang Z, Wei T, Liu R, Ma T, Zhi D, Zhu M*, Kong D*, Wang K*. Targeted Repair of Vascular Injury by Adipose-derived Stem Cells Modified with P-selectin Binding Peptide. Advanced Science, 2020, 7: 1903516. IF17.521

10. Wu P, Wang L, Li W, Zhang Y, Wu Y, Zhi D, Wang H, Wang L*, Kong D*, Zhu M*. Construction of vascular graft with circumferentially oriented microchannels for improving artery regeneration. Biomaterials, 2020, 119922. IF15.304

11. Li W, Midgley A, Bai Y, Zhu M*, Chang H, Zhu W, Wang L, Wang Y, Wang H, Kong D*. Subcutaneously engineered autologous extracellular matrix scaffolds with aligned microchannels for enhanced tendon regeneration. Biomaterials, 2019, 224:119488.IF15.304

12. Zhu M1, Wu Y1, Li W, Dong X, Chang H, Wang K, Wu P, Zhang J, Fan G, Wang L, Liu J, Wang H*, Kong D*. Biodegradable and elastomeric vascular grafts enable vascular remodeling. Biomaterials, 2018, 183: 306-318.IF15.304

13. Dong X, Yuan X, Wang L, Liu J, Midgley AC, Wang Z, Wang K, Liu J, Zhu M*,  Kong D*. Construction of a bilayered vascular graft with smooth internal surface for improved hemocompatibility and endothelial cell monolayer formation. Biomaterials, 2018, 181: 1-14. IF15.304

14. Zhu M1, Wang Z1, Zhang J, Wang L, Yang X, Chen J, Fan G, Ji S, Xing C, Wang K, Zhao Q, Zhu Y, Kong D*, Wang L*. Circumferentially aligned fibers guided functional neoartery regeneration in vivo, Biomaterials, 2015, 61: 85-94.IF15.304

15. Li L, Wang Y, Guo R, Li S, Ni J, Gao S, Gao X, Mao J, Zhu Y, Wu P, Wang H,  Kong D, Zhang H*, Zhu M*, Fan G*. Ginsenoside Rg3-loaded, reactive oxygen species-responsive polymeric nanoparticles for alleviating myocardial ischemia-reperfusion injury. Journal of Controlled Release. 2020, 317: 259-272. IF11.467

16. Zhu M, Wang K, Mei J, Li C, Zhang J, Zheng W, An D, Xiao N, Zhao Q, Kong D*, Wang L*. Fabrication of highly interconnected porous silk fibroin scaffolds for potential use as vascular grafts, Acta Biomaterialia, 2014, 10: 2014-2023.IF10.633

17. Gao SWang LZhang YLi LZhang YGao XMao JWang L*Wang LWang HZhu M*Fan G*. Tanshinone IIA-loaded aligned microfibers facilitate stem cell recruitment and capillary formation by inducing M2 macrophage polarization[J]. Applied Materials Today, 2020, 21: 100841. IF8.633

18. Jiang Z, Zhang K, Du L*, Cheng Z, Zhang T, Ding J, Li W, Xu B*, Zhu M*. Construction of chitosan scaffolds with controllable microchannel for tissue engineering and regenerative medicine. Mater Sci Eng C Mater Biol Appl, 2021, 126: 112178. IF8.457

19. Yuan X, Li W, Yao B, Li Z, Kong D, Huang S*, Zhu M*. Tri-Layered Vascular Grafts Guide Vascular Cells' Native-like Arrangement. Polymers (Basel). 2022 Mar 28;14(7):1370. doi: 10.3390/polym14071370. PMID: 35406244; PMCID: PMC9003212. IF4.967

20. Mao D1, Zhu M1, Zhang X, Ma R, Yang X, Ke T, Wang L, Li Z*, Kong D, Li C*. A macroporous heparin-releasing silk fibroin scaffold improves islet transplantation outcome by promoting islet revascularisation and survival, Acta Biomaterialia. 2017, 59: 210-220. IF10.633

21. Ding X1, Zhu M1, Xu B, Zhang J, Zhao Y, Ji S, Wang L, Wang L*, Li X, Kong D, Ma X, Yang Q*, Integrated Trilayered Silk Fibroin Scaffold for Osteochondral Differentiation of Adipose-Derived Stem Cells, ACS Appl. Mater. Interfaces, 2014, 6: 16696-705. IF10.383

22. Li L, Ni J, Li M, Chen J, Han L, Zhu Y, Kong D, Mao J, Wang Y, Zhang B, Zhu M*, Gao X*, Fan G*. Ginsenoside Rg3 micelles mitigate doxorubicin-induced cardiotoxicity and enhance its anticancer efficacy, Drug Delivery, 2017, 24: 1617-1630. IF6.819

23. Du L, Li W, Jiang Z, Wang L, Kong D, Xu B*, Zhu M*. Hierarchical macro/micro-porous silk fibroin scaffolds for tissue engineering. Materials Letters, 2019, 236: 1-4. IF3.574

24. Li W, Chen J, Xu P, Zhu M*, Wu Y, Wang Z, Zhao T, Cheng Q, Wang K*, Fan G,  Zhu Y, Kong D. Longterm evaluation of vascular grafts with circumferentially aligned microfibers in a rat abdominal aorta replacement model. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2018, 106(7): 2596-2604. IF3.405

25. Li W, Wu P, Zhang Y , Midgley A, Yuan X, Wu Y, Wang L, Wang Z *, Zhu M*, Kong D. Bi-layered polymeric micro- and nano-fiber vascular grafts as abdominal aorta replacements: Long-term in vivo studies in a rat model. ACS Applied Bio Materials, https://doi.org/10.1021/acsabm.9b00641.

26. Wang K1, Zhu M1, Li T, Zheng W, Li L, Xu M, Zhao Q, Kong D, Wang L. Improvement of Cell Infiltration in Electrospun Polycaprolactone Scaffolds for the Construction of Vascular Grafts, Journal of Biomedical Nanotechnology, 2014, 10: 1588-1598. IF3.641,

27. Du L1, Zhu M1, Yang Q, Zhang J, Ma X, Kong D, Li X, Xu B, Wang L*. A novel 3D biphasic silk composite scaffold for intervertebral disc tissue engineering. Materials letters, 2014, 117: 237-240. IF3.574

28. Zhang J, Wang L, Zhu M, Wang L, Kong D. Wet-spun poly(ε-caprolactone microfiber scaffolds for oriented growth and infiltration of smooth muscle cells. Materials letters, 2014, 132: 59-62. IF3.574

29. Du L, Yang Q, Zhang J, Zhu M, Ma X, Zhang Y, Wang L, Xu B. Engineering a biomimetic integrated scaffold for intervertebral disc replacement. Materials Science and Engineering: C, 2019, 96: 522-529. IF8.457

30. Gao S, Wang Y, Li D, Guo Y, Zhu M, Xu S, Mao J, Fan G. TanshinoneIIA Alleviates Inflammatory Response and Directs Macrophage Polarization in Lipopolysaccharide-Stimulated RAW264. 7 Cells. Inflammation, 2019, 42: 264-275. IF4.657

31. Zeng C, Yang Q, Zhu M, Zhang J, Li X, Xu B, Wang L. Silk Fibroin Porous Scaffolds for Nucleus Pulposus Tissue Engineering, Materials Science and Engineering C, 2014, 37: 232-240.IF8.457

32. Mei J, Zhang X, Zhu M, Wang J, Wang L, Wang L. Barium-triggered β-sheet formation and hydrogelation of a short peptide derivative, RSC Advances. 2014, 4: 1193-1196.IF4.036

33. Wang K, Xu M, Zhu M, Su H, Wang H, Kong D, Wang L. Creation of macropores in electrospun silk fibroin scaffolds using sacrificial PEO-microparticles to enhance cellular infiltration, J Biomed Mater Res Part A , 2013 101: 3474-3481. IF4.854

34. Wei J, Wang H, Zhu M, Ding D, Li D, Yin Z, Wang L, Yang Z. Janus nanogels of PEGylated Taxol and PLGAPEGPLGA copolymer for cancer therapy, Nanoscale, 2013, 5: 9902-990.IF8.307

35. Wang K, Guan Y, Liu Y, Zhu M, Li T, An D, Ou L, Che Y, Zhang G, Zhang J, Zheng X, Kong D. Fibrin glue with autogenic bone marrow mesenchymal stem cells for urethral injury repair in rabbit model.Tissue Eng Part A. 2012,18: 2507-17.IF4.080

36. Wang KZheng WPan YMa SGuan Y, Liu RZhu MZhou XZhang JZhao QZhu YWang L, Kong DThree-layered PCL Grafts Promoted Vascular Regeneration in a Rabbit Carotid Artery Model. Macromolecular Bioscience. 2016. 2016, 16: 608-618IF5.859

37. Ke T, Yang M, Mao D, Zhu M, Che Y, Kong D, Li C. Co-Transplantation of Skin-Derived Precursors and Collagen Sponge Facilitates Diabetic Wound Healing by Promoting Local Vascular Regeneration. Cell Physiol Biochem. 2015; 37:1725-37.

38. Pan Y, Zhou X, Wei Y, Zhang Q, Wang T, Zhu M, Li W, Huang R, Liu R, Chen J, Fan G, Wang K, Kong D, Zhao Q. Small-diameter hybrid vascular grafts composed of polycaprolactone and polydioxanone fibers. Sci Rep, 2017, 7: 3615. IF4.996

39. Wang Z, Wu Y, Wang J, Zhang C, Yan H, Zhu M, Wang K, Li C, Xu Q, Kong D. Effect of Resveratrol on Modulation of Endothelial Cells and Macrophages for Rapid Vascular Regeneration from Electrospun Poly(ε-caprolactone) Scaffolds. ACS Appl Mater Interfaces, 2017, 9: 19541-19551.IF10.383

40. Wang K, Zhang Q, Zhao L, Pan Y, Wang T, Zhi D, Ma S, Zhang P, Zhao T, Zhang S, Li W, Zhu M, Zhu Y, Zhang J, Qiao M, Kong D. Functional Modification of Electrospun Poly(ε-caprolactone) Vascular Grafts with the Fusion Protein VEGF-HGFI Enhanced Vascular Regeneration. ACS Appl Mater Interfaces, 2017, 9: 11415-11427. IF10.383